Wireless Access Networks: Technology & Research Challenges

Rajeev Shorey (Ph.D, Senior Member IEEE) Computer Science Department National University of Singapore, Singapore & Research Staff Member IBM India Research Laboratory New Delhi, India

Overview

- Existing and Emerging Wireless Technologies
- Wireless Access Networks: Status and Trends
 - WLANs (Wi-Fi)
 - WMANs (Wi-Max)
- Vision for the Future
 - Key Technical Challenges
 - Future Environment
- Concluding Remarks

The Wireless Space: From WPANs to WWANs

R. Shorey

ICBN 2004 Kobe Japan

Wireless Technology : Current Landscape

Existing and Emerging Wireless Technologies

Network	Standard	Radio Basic Rate	Frequency Band	Mobility
WLAN	IEEE 802.11b IEEE 802.11a IEEE 802.11g	1, 2, 5.5, 11 Mbps Up to 54 Mbps Up to 54 Mbps	ISM 2.4 GHz ISM/UNI 5 GHz ISM 2.4 GHz	Low Low Low
Bluetooth	IEEE 802.15.1	1 Mbps	ISM 2.4 GHz	Low
WMAN	IEEE 802.16 IEEE 802.16a	134 Mbps 70 Mbps	10 - 66 GHz 2 - 11 GHz	N/A N/A
2G	GSM GPRS EDGE	9.6/57.6 Kbps 115 Kbps 384 Kbps	900/1.8K/1.9K MHz	High High High
3G	UMTS/WCDMA	Up to 2 Mbps	1900 – 2025 MHz	High
UWB	IEEE 802.15.3a or de facto?	Potentially upto 400 Mbps	3.1 – 10.6 GHz (FCC)	N/A
Sensors, UbiComp	IEEE 802.15.4 and proprietary systems	5 – 200 Kbps	433, 866, 916 MHz 2.4 GHz (ISM)	N/A or low
Next-gen WLANs		Upto 1 Gbps (indoor), 150-250 Mbps (outdoor)	-	Low

Networks of the Future

Ad Hoc Peer-to- Peer Routing Technology (meshnetworks)

Networks of the Future

Broadband Wireless Vision

Broadband wireless networks a key enabling technology for mobile multimedia services of the future..... (while also facilitating rapid/flexible deployment of high-speed access to fixed computing devices in the near-term)

IEEE 802.11 Status and Trends

802.11 Current Status

ICBN 2004 Kobe Japan

IEEE 802.11 Specifications

	802.11b	802.11g	802.11a
Max. Speed	11 Mbps	54 Mbps	54 Mbps
Modulation	CCK	OFDM & CCK	OFDM
Frequencies	2.4 – 2.497 GHz	2.4 – 2.497 GHz	5 GHz band
Approval	July 1999	June 2003	July 1999

Other Task Groups

802.11d

The group is focusing on extending the technology to countries that are not covered by the IEEE

■ <u>802.11e</u>

 The group is focusing on improving multi-media transmission quality of service

802.11

 The group is focusing on enhancing roaming between APs and interoperability between vendors

802.11h

The group is addressing concerns on the frequency selection and power control mechanisms on the 5 GHz band in some European countries

802.11

- The group is focusing on enhancing wireless LAN security and authentication for 802.11 that include incorporating Remote Access Dialing User Service (RADIUS), Kerberos and the network port authentication (IEEE 802.1X)
- 802.1X has already been implemented by some AP vendors

WLAN Security

Wireless LAN Security

Figure 1: This image represents the signal emitted from a single wireless access point located in downtown Lawrence, KS

Threats to Wireless LAN Security

Internal Vulnerabilities

- Rogue WLANs
- Insecure Network Configurations
- Accidental Associations

External Threats

- Eavesdropping and Espionage
- Identity Theft
 - Service Set Identifiers (SSIDs)
 - MAC Addresses
- Evolving Attacks

Hacker's Wireless LAN Toolbox

- Many hardware and freeware tools available on the Internet
- Available Freeware Tools
 - NetStumbler
 - Kismet
 - Wellenreiter
 - ▶ THC-RUT
 - Ethereal
 - ▶ WEPCrack
 - AirSnort
 - HostAP

Available Freeware Tools

What do these tools do?

- Wireless sniffers and monitors
- Passively monitor wireless traffic and sorts data to identify
 - SSIDs
 - MAC addresses
 - Channels
 - Connection speeds
- Use brute force to identify low traffic access points
- Interactively browse the capture data
- Crack 802.11 WEP encryption keys using the latest discovered weakness of RC4 key scheduling
- Computing the encryption key when enough packets have been gathered
- ▶ ...

WLAN versus Bluetooth

WLAN versus Bluetooth

ICBN 2004 Kobe Japan

Two options: 802.11 and Bluetooth

802.11

Designed for wired Ethernet replacement New developments are blurring the distinction

- 802.11b for PDAs
- Bluetooth for LAN access

Designed for cable replacement

802.11 Market Evolution

R. Shorey

ICBN 2004 Kobe Japan

The Popularity of Wi-Fi

Year 2003

- In-Stat/MDR
- 22.7 million network interface cards and access points rolled out
- Wi-Fi hardware business
 - Billion dollar sector with 2003 revenues of \$ 1.7 billion

<u>Source</u>

Network World Fusion (www.nwfusion.com)

Trends in Wi-Fi

- Convergence of voice and data over a Wi-Fi infrastructure
- Combined IP phone/base station system
 - ▶ Roaming
 - Handoff
 - Device authentication from one base station to another as a user moves throughout an office from one access point to another
- Future
 - Wi-Fi / IP phones
 - Sophisticated location-based services

IEEE 802.16 Fixed Broadband Wireless Access (Wi-Max)

Fixed Broadband Wireless Access

ICBN 2004 Kobe Japan

IEEE 802.16 Broadband Wireless Access: Wi-Max

- Worldwide Interoperability for Microwave Access
- WAN technology that can beam broadband signals upto 30 miles from a cell tower
- IEEE 802.16
 - Being touted as the last-mile alternative to DSL and cable modem
 - Future
 - Basis for ubiquitous, continuous mobile wireless connectivity
 - Bandwidth
 - From a single base station, an antenna can transmit as much as 75 Mbps of bandwidth for 2 to 3 miles

IEEE 802.16 Broadband Wireless Access

■ IEEE 802.16

- Frequencies from 10 to 66 GHz
- Significant deployment challenges
- IEEE 802.16a
 - Frequencies from 2 to 11 GHz band
 - Includes both licensed and license exempt spectra

WMAN versus WLAN

Comparison to a Wireless LAN

- Multimedia QoS, not only contention based
- Many more users
- Much higher data rates
- Much longer distances

The IEEE 802.16 Working Group

The IEEE 802.16 Working Group on Broadband Wireless Access Standards

HOW IT WORKS

802.16

IEEE 802.16 standards define how wireless traffic will move between subscribers and core networks.

A subscriber sends Participation The base station receives wireless traffic at speeds transmissions from multiple sites and ranging from 2M to 155M sends traffic over wireless or wired bit/sec from a fixed links to a switching center using antenna on a building. 802.16 protocol. Switching center Wireless or wired link using 802.16 protocol Residential The switching subscriber center sends traffic to an ISP or the **ISP** Office building public switched subscribers **Base station** telephone network.

Market

Broadband wireless equipment sales should surpass \$ 1.5 billion by 2008 mostly because of Wi-Max

 ABI Research Report (NW Fusion, March, 2004)

Wi-Max: Future Areas

■ <u>IEEE 802.16e</u>

- Will allow seamless handoffs between base stations
- Providing true mobile broadband connectivity
- <u>IEEE 802.16d</u>
 - The technology embedded in PCMCIA cards
 - Customers will be able to access Wi-Max directly from their laptops

PHY Considerations

- Line of Sight (because of 10-66 GHz)
 - Negligible multi-path => Large channels
- Broadband Channels
 - Wide channels (20, 25 or 28 MHz)
 - High capacity Downlink AND Uplink
- Multiple Access
 - TDM/TDMA
 - High rate burst modems
- Adaptive burst profiles on Uplink and Downlink
- Multiple duplex schemes
 - ► TDD
 - FDD (including Burst FDD)
 - Support for half-duplex terminals
- Both TDD and FDD alternatives support adaptive burst profiles
 - Modulation and Coding options may be dynamically assigned on a burst-by-burst basis

Medium Access Control

- To support variety of services
 - IEEE 802.16 MAC must accommodate both continuous and bursty traffic
- 802.16 MAC must also support a variety of backhaul requirements
 - ► ATM
 - Packet-based protocols
- Downlink
 - Data to SSs are multiplexed in TDM fashion
- Uplink
 - Shared between SSs in TDMA fashion
- MAC is connection-oriented
- Details of scheduling and reservation management are left unstandardized
 - Provide an important mechanism for vendors to differentiate their equipment

IEEE 802.20 Mission and Project Scope

■ IEEE 802.20

▶ The Mobile Broadband Wireless Access (MBWA)

Mission

- The mission of IEEE 802.20 is to develop the specification for an efficient packet based air interface that is optimized for the transport of IP based services
- The goal is to enable worldwide deployment of affordable, ubiquitous, always-on and interoperable multi-vendor mobile broadband wireless access networks that meet the needs of business and residential end user markets

MBWA Scope

- Specification of physical and medium access control layers of an air interface for interoperable mobile broadband wireless access systems
- Operating in licensed bands below 3.5 GHz
- Optimized for IP-data transport, with peak data rates per user in excess of 1 Mbps
- It supports various vehicular mobility classes up to 250 Km/h in a MAN environment and targets spectral efficiencies, sustained user data rates and numbers of active users that are all significantly higher than achieved by existing mobile systems.

FUTURE CHALLENGES

Challenges in WLANs

Coverage versus Performance Tradeoff

■ <u>IEEE 802.11b/802.11g</u>

- 802.11g is backward compatible with 802.11b
- Both sharing the 2.4 GHz band crowded band
- Three non-overlapping channels
 - When interference is encountered on one channel, there isn't much room to move
- Performance Degradation
 - To handle slower clients, 802.11g networks decrease their data rates in the presence of 802.11b clients
 - Limits AP throughput to the 11 Mbps of 802.11b
- Greater range of 802.11b/802.11g translates into fewer access points for a given coverage area

■ <u>IEEE 802.11a</u>

- High throughput
- High cost
- Will the capacity gains of 802.11a justify the additional cost?
- Solution
 - Multi-mode capabilities rapidly becoming the norm

Deployment Issues in Wireless LANs

- How many Access Points to deploy?
- Optimum placement of the APs
 - Complex problem
 - Attenuation effects
 - Multi-path distortion
 - Structural issues
 - Interference from other sources in the same band
 - Number of users (estimate)
 - What kind of traffic?

IEEE 802.11 EDCF: A QoS Solution for WLAN

Multiple FIFO queues in the MAC

- Priority Queuing
- Every queue is an independent contention entity with its own contention parameters

Challenges in Wi-Max

Performance and Capacity

Will it truly be a cable/DSL replacement technology ?

QoS

Scheduling

Seamless handoffs

Enabled by IEEE 802.16e

Wireless Inter-working Technologies

- Interoperability
- Handovers

Wireless Local Area Network

Wireless Wide Area Network

Wireless Personal Area Network

Hand-over

Bluetooth

Integration of Wi-Fi and Cellular Technologies

Vision

A single handset that can seamlessly move from a Wi-Fi network to a cellular network while supporting a non-interrupted voice call

Issues

- Quality of voice in unlicensed bands (e.g., ISM band) may tend to be noisy
- Billing and Profit sharing
- Wi-Fi can be useful to cellular carriers to supplement cellular data offerings

Location Enabled Networks

Objective: to find the (x,y,z) co-ordinates of the device in the building

<u>Question</u>: Where is Student Z? <u>Answer</u>: Z is currently in front of Prof. Y's office

ICBN 2004 Kobe Japan

R. Shorey

Research Program

The Future Environment

ICBN 2004 Kobe Japan

Glimpse of the Future: Co-existence

R. Shorey

ICBN 2004 Kobe Japan

What are the Drivers for Change?

Open software
Worldwide standards
Increasing complexity

Concluding Remarks: Technologies

IEEE 802.11

Will continue to grow in

- Public spaces, home, industry vertical, and enterprise market
- 802.11 may provide a viable alternative to 3G in public places
- ▶ 802.11 and 3G will be complementary and may not compete with each other !
- Offers a great promise for bringing low cost networking services to the Asia/Pacific mass market
- IEEE 802.16 promises to be of great interest in the "Broadband Wireless" space

From Internet to Sensor Domains

ICBN 2004 Kobe Japan

Concluding Remarks: Challenges

Interoperability ► Wi-Fi ▶ 2.5G/3G ▶ Wi-Max Billing and Pricing Performance and Capacity issues How will layer 4 protocols perform over highly heterogeneous networks? Quality of Service Security

Thank You

<u>http://www.comp.nus.edu.sg/~rajeev/</u>

http://www.research.ibm.com/people/r/rshorey

rajeev@comp.nus.edu.sg rajeevshorey@yahoo.com